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FOREWORD

This report summarizes research performed in Contract
F49620-78-C-0024 during the period March 31, 1978 through
March 30, 1979. This research was sponsored by the Air Force
Office of Scientific Research (AFSC), United States Air Force.
The Air Force program monitors were Lt. Col. Robert Smith and
Dr. George Samaras.

Study participants were Dr. David Wilcox, principal investi-
gator, and B. A. Wilcox, data processing support. Mr. Robert
MacCormack of the NASA Ames Research Center and Dr. James McCune
of the Massachusetts Institute of Technology provided invaluable
consulting assistance. Manuscript preparation was accomplished
by Ms. Lottie Pilner. |
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ABSTRACT i

A computer program is being developed which will he suitable
for numerically simulating three-dimensional viscous flow in
rotating turbomachines. This report summarizes progress to
date and gives projections of work to be accomplished during

s N o L

the next year. 1

I
; l iii




TABLE OF CONTENTS

SECTION
BORENWORDE T8 o s o e
ABSTRACT . . « » « s » & % % & » = =
CONTBNTS « o & « s s = 5 % = # & # = 2 = & @
‘ BOBREION. . "o o a5 & 3 R e o @ % W e

1 INTRODUCTION .

2 WORK ACCOMPLISHED TO DATE . . . . . . « « . . .
2.1 Outline of the Overall Approach .
- 2.2 Equations of Motion .
2.3 Geometric Details .
2.4 PBoundary Condifions . « « ¢« « « o« ¢ =
3 FUTURE WORK
3.1 Mesh-Generation Procedure for Arbitrary
i ' Three-Dimensional Geometries . . . . . .

3.2 Proper Handling of Shock Waves
3.3 Incorporation of Viscous Effects

4. DISCUSSION O T SRR S e SRR
REFERENCES SR RN e R R RO S

PAGE
ii
iii

18
21
21

22
23




T

SYMBOL

1o |

| 8
-
-
|0
-

Hom-I|S|x oo

ry(x),rg(x)
t

u,v,w

X,Y,2

D O 1|

Subscripts

i, j,k

Mmoo -

NOTATION

DEFINITION

Vector area

Vectors joining vertices of a finite-
difference element

Specific internal energy

Specific enthalpy

Unit vector in z direction

Unit outer normal

Static pressure

Flow speed, q?=u?+v?+w?

Radial coordinate

Hub, shroud radius

Time

Velocity components in x,y,z directions
Streamwise, normal, spanwise coordinates
Position vector

Circulation

Density

Coordinate system angular velocity

Mesh point indices
Inlet

Exit

Upper mesh boundary

Lower mesh boundary




1. INTRODUCTION

Modern-day design of turbomachinery depends strongly upon
developing an understanding of complicated flow phenomena in
rotor passages including viscous-inviscid interactions and
fully three-dimensional effects. At present, no theoretical
tool exists which accurately and efficiently describes such
phenomena. Designers must depend upon inviscid theories which
generally require empirical knowledge of trailing-edge flow
deflection angles and rough estimates of effects of key viscous
phenomena. Because the required.empirical information generally
must be gleaned from experimental data and because definitive
data are scarce, improved theoretical tools are needed.

Great promise for improved theoretical tools attends recent
developments in inviscid axial turbomachine throughflow theory,
in numerical simulation methods, and in three-dimensional

turbulent boundary-layer theory. Considering first improvements
I-7

in the inviscid theory of axial turbomachines, McCune and

his co-workers have developed a powerful method for predicting
fully three-dimensional flow through axial turbomachinery. The
method offers great promise as a design tool as it applies to
highly-loaded blading and accounts for nontrivial effects of
three dimensionality. The theory, however, is inapplicable

within the rotor passages and, to date, leaves shocks unaccounted.

Advances in numerical methods, particularly those of MacCormack5

and Hung,GVshow that numerical simulation of flow in the rotor
passages is quite feasible, particularly under neglect of viscous
effects. In the particular context of turbomachines, Thompkins
and Epstein7 have successfully computed inviscid flow through a
transonic compressor rotor. Hung's computations show that, for
three-dimensional external flows, computing time for a viscous
simulation will exceed that of an inviscid simulation by as
little as 50%, including the presence of a significant separated
region. The third advance has been in the field of turbulent




boundary-layer theory. The ability to accurately predict prop-

erties of three-dimensional boundary layers is steadily improv-
ing. The ability to compute such properties on an arbitrary
wing at all flow speeds has been developed by Cebeci, et al.8
In a recent study,9 the advanced turbulence models developed
by Wilcox and Tracilo’11
incorporated in the Cebeci program. Predictions are encouraging.
Synthesis of these three methods potentially will yield the most

advanced treatment of axial turbomachine flow yet developed.

and by Wilcox and Rubesin12 have been

This study has been undertaken in order to accomplish such a ?
synthesis. In this report we discuss progress made during the
initial year of research and projected work to be accomplished
during the next year. Because so many novel features are being
included in the computer program that will become the desired
computational tool for axial turbomachines, the program is not
yet fully operational. Hence, no simulations are included,
Rather, we present details of the underlying theory.

T
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2. WORK ACCOMPLISHED TO DATE

The primary objective of this research project is to develop an
efficient and accurate computational procedure for predicting
viscous flow through axial turbomachinery. Such a procedure

will be developed by first developing an inviscid three-dimensional
computational tool and then incorporating viscous effects through
either (a) coupling with a three-dimensional boundary-layer
program for attached regions and full Navier-Stokes computational
methods on separated regions; or, (b) full Navier-Stokes methods
throughout. In the first year of this project our focus has been
on the inviscid phase of the problem. We have made important
progress toward completing development of a three-dimensional,
inviscid computer program which allows for arbitrary distribution
of mesh points. Details follow:

2.1 OUTLINE OF THE OVERALL APPROACH

In developing a three-dimensional inviscid program we have
chosen to begin with a program developed by MacCormack and Paullay13
of the NASA Ames Research Center. The program has been designed
for computation of transonic viscous flow past arbitrary airfoil
sections and permits arbitrary distribution of finite-difference
mesh points. Additionally, the program has an automatic mesh-
generation option which yields a mesh contoured to the airfoil.
Through a remesh option, the program handles shock waves by
automatically aligning the mesh with the shock and by locally
applying the Rankine-Hugoniot relations. To render this program
applicable for three-dimensional inviscid flows the following
sequence of steps are being taken:
1. Incorporate three-dimensional input/output
logic, suppress viscous-flow provisions and

add end planes.

2. Incorporate provision for three-dimensional

geometry.




3. Revise equations of motion to account for

computing in an axisymmetric, rotating co-
ordinate system.

4. Revise mesh-generation method to provide
consistency with periodicity boundary
conditions.

5. Incorporate McCune's2 theory to provide
downstream boundary conditions.

6. Generalize the procedure for handling
shocks to accommodate three dimensionality.

To date the first four steps have been completed and Step 5

is in progress. We have thus developed an inviscid three-
dimensional program suitable for computing flows over arbitrary
wings (with the limitation that the program treats shocks in a
less-rigorous manner than in the original 2-D version until

Step 6 is completed). In the following subsections, we present
details of the equations of motion, geometry provisions embodied
in the program, and boundary conditions.

2.2 EQUATIONS OF MOTION

In constructing the program, the equations of motion are written
in a cartesian coordinate system and effects of axisymmetry are
included in the geometry package. 1In order to write the
equations of motion we let x, y and z denote rectangular
cartesian coordinates oriented in the streamwise, blade normal,
and spanwise directions (Figure 1).

The coordinate system rotates at angular velocity Q about the

x axis. Velocity components in the x, y and z directions are
denoted by u, v and w, respectively. Letting t, p, p, € and h
denote time, density, static pressure, specific internal energy,
and specific enthalpy, the equations for conservation of mass,
momentum and energy for inviscid three-dimensional flow are:

T——

——




i Filgure 1. Schematic of a section of the finite-difference
mesh.




52+ 3y (ew) *+ & (o) + 5 (W) = 0 (1)
= (pu) + 2 (pu?+p) + aa_y (ovu) + 2= (pwu) = 0 (2)
9 + 9 9 2 ) X 2
3e(PV) * 3x (puv) + == (pv™+p) +55(pwv)=2pQu+pR”y (3)
9 ( ) + 3 3 3 2 - QZ
Frald = (puw) + 5;(pvw)+§a(pw +p)=-2pQv+pRt°z (4)
d d 3
ﬁ[o(e%qz)] = [pu(ht;-qﬁ] 5 [ pv(h+%q2)]
+ [ow(h+§q2)]= 0 (5)
where
q2=u2+v2+w2 (6)

Equations (1) - (6) will be solved using the MacCormack time-
splitting method. As complete details of the method have been

5,6,13

presented elsewhere, for the sake of brevity we present

no details here.

2.3 GEOMETRIC DETAILS

Figure 1 schematically depicts a section of a three-dimensional
mesh about a blade. For simplicity, in the spanwise direction
parallel planes are shown to pass normal to the wing. There is
no such restriction in the program, however, as such a limitation
would preclude flow simulations with varying hub and/or shroud
radius. In these planes, which we shall refer to as "k planes,"
lies a "&rap-around" mesh contoured to the local blade section.

Mesh-point distribution is completely arbitrary.




In solving the equations of motion, it is necessary to
compute the surface areas and the volume of a given finite-
difference element. The element with which we are working is
a hexahedron (see Figure 2). Computing thc vector areas éi+1’
éj+1’ ék+1 (and similarly those of the opposite faces, viz,

51’ éj and Ak) can be accomplished by breaking each side into
two triangles and by using vector algebra to compute the area
of each triangle. (Note that conceptually we must do this if
the vertices of a given face are not coplanar.) Focusing upon
Ay 4y we refer now to Figure 3. Mesh coordinates for the four
vertices are written compactly in terms of the position vectors
=i,3,
by half the cross product of vectors joining a common vertex

k at each vertex. The vector area of a triangle is given

and the remaining two vertices, i.e., denoting the vector areas
of triangles I and II by AI and éII we have:

A = % axb
3 (7)
SR T 2EE
where
2 2 Xj41,5,k+1 "Xi,j,k+1
D2 Biug,ie1,k%1 55,5, 541 (8)
c =

Xi,j+1,k+1 "Xi,j,k+1

Using the prescription given in Equation (8) insures that, as
required in the finite-difference formulation, the area vector
will always be an outer facing normal on the k+1 face. If for

simplicity we assume all four vertices lie in the same xy plane
and we redenote the vertices as 5, 6, 7, 8, rather than (i,j,k+1),
(i+1,j,k+1), (i+l,j+1,k+1), (i,j+1,k+1) as in Figures 2 and 3,
Equations (7) simplify to:
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Figure 2. Typical hexahedral finite-difference element.
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Figure 3. Geometry of the k+l1 face.




| =

AI = 1/2 [(xﬁ-xs)()'f)'s) B (X7'XS)()’6')’5)]

(9)

| =

AII= 1/2 [(X7'X5) (YB_YS) - (xs'xs)()'7°)'5)]
where k is a unit vector in the z direction.

Computing the volume is also conveniently done by vector
algebra, plus knowledge of two key solid-geometry theorems.
First, any hexahedron can be broken up into five tetrahedra.
Second, the volume of a tetrahedron is one-third the product
of its base area and its height (altitude). Consider the
tetrahedron whose vertices are points 1, Z, 3 and 6 (see
Figure 4). Let a and b denote the vectors lying along the
sides joining vertices 1 and 2 and 3, respectively, i.e.,

27 Zied,5,k7 4,5,k

(10)
R Bien, 401,k 81,5k
Then, the base area becomes
A, = ¥ axb (11)
=B b ==

The altitude can be computed as the dot product of the unit
normal to the plane of a and b with the vector c joining
vertices 1 and 6. The normal, n, is given by:

n = (12)

.
where |axb| denotes the magnitude of axb. Hence, the volume

becomes

=10+




Ay 29+1,5+1,k

=i+l J. k4l o

l x

=]

Figure 4. Typical tetrahedron; the vector n is normal to
the plane of the vectors a and b.

=1lw




| Viese ™

1/6 A,°¢c (13)
1/6 axb-c

In terms of previous notation, we have finally,

Vizse = 1/6(X,iv¥,i*2,k) x (Rgiefgjeisk) - (Rgitigivigh) :

1 (14)

1 where xiE xi-xl, etc. (15)

In applying Equation (14) the vertex numbering system given in
Figure 2 is quite important. The key feature of the numbering
system is that (a) on adjacent planes the numbering proceeds

in the same direction, i.e., counterclockwise and (b) vertices
at which one starts (e.g., 1 and 5 for k planes) are adjacent.
The volume of the original hexahedron is given by the sum of the
volumes of the five tetrahedra, viz,

v:v +V +

1548 * Vises * ¥

+V

1236 3678 1368 (16)

Equation (16) is applicable to arbitrary hexahedra.

2.4 BOUNDARY CONDITIONS

The most unique aspect of the computational procedure follows
from the boundary conditions which must be somehow specified or
generated at the mesh boundaries as discussed below. While the

? boundary conditions at the hub and shroud are standard (i.e.,
{ vanishing normal fluid flux), those at the other mesh boundaries
are much more novel and complex. Figure 5 shows a cross-sectional

plane on a k plane; the surfaces I and E are the inlet and exit
boundaries respectively while the boundaries denoted by U and L
are symmetrically located between adjacent blades. Note that
the two blades beyond the boundaries are shown only to help

=12




Figure 5.

@,

Schematic of computational mesh in a plane
of constant radius.
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illustrate the geometry and are not included in the com-
putational domain. The quantity T is the (instantaneous)
circulation about the blade section.

On boundaries U and L we impose periodicity conditions upon
the solution. Hence, for a given flow property, ¢, we require
that at, say, each axial position
W % (17)
where subscript denotes boundary. The boundaries U and L must,
of course, be of identical shape and must be symmetrically
located between adjacent blades. While it would be desirable

for these boundaries to lie in stream surfaces, their locations
are not of critical importance to the solution method.

On the one hand, the use of periodic boundary conditions is
nothing new for internal flow studies, although their use has
implications which may not be generally obvious from experience
in external-flow calculations. On the other hand, the boundary
conditions we propose using at the inlet and exit boundaries
are new and should prove quite innovative and almost certainly
will add great economy to our computational procedure.

The boundary conditions we intend to use are based on a recently
developed external flow theory for highly-loaded axial turbo-

machinesl-s’ e B and will be implemented as follows:

1. At the start of the computation, input
data will be specified including blade
geometry, inlet conditions from far up-
stream (e.g., inlet flow, angular momentum
and enthalpy), and an initial guess at the
internal flowfield (including circulation,
', about blade sections). These input




data do not include fluxes, separately,
across either inlet or exit surfaces
(I and E).

From the far upstream inlet conditions
and the instantaneous T, the external
analytical theory will be used to de-
termine flow properties along the
surfaces I and E, including the neces-
sary surface fluxes. The information
required by the external theory to do
this is merely the difference in fluxes
at '"corresponding" points on I and E.

The manner in which these flux differences
will be generated from the internal flow-
field (either from the initial guess or
from later iterates) is first to trace
out "instantaneous streamlines' corres-
ponding to that flow as if it were steady.
Using these connection streamtubes, and
appropriate conservation laws, the
required net fluxes can be obtained.

Starting from the initial guess (or pre-
ceding iterate) and using the surface
fluxes determined in Steps 2 and 3, the
internal computation will proceed for a
number of timesteps (the number to be de-
termined from experience) thus improving,
or iterating on the flowfield in Step 1.

Steps 2 through 4 will be repeated until

a converged solution has been obtained.

.,-,,,_Mw.m{éi'u"




There are several key points about this procedure which are
worthy of note. The most important reason for adopting such

a method is to insure solution accuracy. Just as having far-
field boundary conditions which reflect conservation of circu-
lation is critically important for accurate numeral computation
of flow about an isolated airfoil, so are realistic inlet- and
exit-surface boundary conditions (no matter where they are
placed) absolutely essential for accurate computation of flow
through a rotor passage. While the need for accurate speci-
fication of exit-surface conditions will come as no surprise

to the experienced numerical fluidflow mechanicist, the
corresponding need for the inlet surface may require further
examination. The need becomes apparent if one notes that even
in a transonic rotor the axial Mach number is generally less
than unity so that any effect downstream can in principle be
felt in the upstream region. This effect is further exaggerated
by the fact that we are working with rotating flows which are
attended by significant coupling between pressure changes and

vorticity perturbationsl6’ =

(such as those produced by
various types of wakes in swirling flowss). Consequently great
care must be taken to account for solution perturbations on the
inlet surface, even when that surface is relatively far from

the blade.

A second key point is the inherent efficiency attending the
procedure because, thanks to the accuracy of McCune's method,
the inlet and exit surfaces can be placed within a tenth of

a chordlength of the blade. 1In so doing, we are able to con-
fine most of the mesh points to the immediate vicinity of the
blade with an obvious saving in computing time relative to a
computation requiring inlet and exit surfaces displaced several
chordlengths from the blade.

16
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As an important observation about the overall procedure, note
that while our procedure actually solves the "analysis problem"
we actually use McCune's theory in the 'design-problem' mode.
On the one hand, given blade geometry and inlet conditions,

our objective is to determine the machine's performance. One
of the key quantities we seek in solving the flowfield is the

circulation, I', a quantity which evolves in time until the
steady-state solution is attained. On the other hand, we are
using the instantaneous circulation in addition to the inlet
conditions to determine flow properties on the inlet and exit
planes via McCune's theory. This is, by definition, the
classical design problem. Now there are two parts of the
design-problem solution which, until steady-flow conditions
have been achieved, will be inconsistent with the instantaneous
internal solution, viz, the line on which the blade wake inter-
sects the exit surface and the blade shape. The latter point
is a conceptualization only and is of no actual consequence to
the solution procedure as McCune's theory will not be used in
the internal region where it could in principle generate a
blade shape consistent with the instantaneous I'. The former
point is of key importance, however, and may serve as an
important measure of the rate of approach to steady-flow

conditions.
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3. FUTURE WORK

During the next year the inviscid version of the program will
be debugged and tested for an axial turbomachine test case to
be selected. In this section, we briefly describe the main
thrust of our projected research efforts after the initial
debugging has been accomplished.

3.1 MESH-GENERATION PROCEDURE FOR ARBITRARY
THREE -DIMENSIONAL GEOMETRIES

An integral aspect of our overall approach is to avoid working
in nonphysical coordinates. By contrast we prefer to use
recténgular cartesian coordinates and confine all geometric
irregularities to the geometry package. That is, we will
reflect the axisymmetry and any variable hub and/or shroud
radius complications through computation of finite-difference
element vector areas and volumes.

To explain our projected procedure, we consider Figure 6 which
shows a view of a rotor passage in an xz plane. The hub and
shroud radii are denoted by rH(x) and rs(x), respectively
where the radial coordinate, , is related to the cartesian
coordinates by

ri= y2 4+ z2 (18)

Our procedure for generating the overall finite-difference mesh
will consist of the following six steps:

1. Generate blade-surface points along
a z=constant k surface. This will
be done by interpolation from input

blade-section data.
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9 00\ )\ e
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Figure 6. Top view of a rotor passage including initial

locations of k surfaces. After deformation of
the k surfaces, k=1 lies along the hub, k=kV lies
along the shroud, and the other surfaces are

deformed by linear interpolation.
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Deform the z surface to conform with

blade-passage geometry. This will be
done by linear interpolation. That
is, if there are ten surfaces between
hub and shroud, the nth surface from
the hub, measuring from the hub, will
lie n-tenths of the local distance
between hub and shroud.

By interpolation, find new blade-
surface points along the deformed k
surface. Again the input blade-
section data will be used.

Generate complete x-y mesh for the
deformed blade section determined in
Step 3. This step uses the mesh-
generation procedure already embodied
in the MacCormack-Paullay13 program.

Compute local values of z for the x-y
mesh generated in Step 4. Note that

in all preceding steps only the values
of z on the blade surface are computed.
In this step we are filling out the
rest of the mesh.

Project the y,z coordinates onto
cylindrical surfaces. To do this we

compute
2
y2+22

(19)
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where y and z denote the values of y and z computed in Step 5.

Using this procedure precludes having to transform the equations
of motion into a nonphysical coordinate system. Consequently,
there will be no need to compute local metrics. We, in effect,

compensate by computing local area vectors and volumes.

3.2 PROPER HANDLING OF SHOCK WAVES

To properly handle shock waves we plan to generalize the remesh
option of the MacCormack-Paullay program for three dimensions.

In this option the mesh is altered from time to time in order to
align a finite-difference mesh line (surface for three dimensions)
with the shock.

3.3 INCORPORATION OF VISCOUS EFFECTS

Originally we had planned to tie a three-dimensional boundary-
layer program into the overall program in order to compute
boundary-layer properties. This would leave a requirement to
find some other computational procedure for separated regions,
probably a full Navier-Stokes computation. It now appears
evident that such a hybrid scheme is impractical and that a
full Navier-Stokes computation is more sensible. This is
particularly attractive as MacCormack has made such improvements
to his time-splitting method that a full viscous computation
can be done with as little as a 50% computing-time increase
over that required for an inviscid computation. Hence, we
plan to devise a full Navier-Stokes program as our end product.




4. DISCUSSION

In summary, we have made important progress toward developing

a computer program which can be used to predict three-dimensional
flow in a rotating turbomachine, including treatment of viscous
effects. This is being done in two steps. In the first step

we are developing an inviscid program. In the second step
viscous effects and more rigorous treatment of shocks will be
added. The debugging phase for the inviscid program is nearing

completion.
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